126 research outputs found

    Catheterization and embolization of a replaced left hepatic artery via the right gastric artery through the anastomosis: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Conversion of multiple hepatic arteries into a single vascular supply is a very important technique for repeat hepatic arterial infusion chemotherapy using an implanted port catheter system. Catheterization of a replaced left hepatic artery arising from a left gastric artery using a percutaneous catheter technique is sometimes difficult, despite the recent development of advanced interventional techniques.</p> <p>Case presentation</p> <p>We present a case of a 70-year-old Japanese man with multiple hepatocellular carcinomas in whom the replaced left hepatic artery arising from the left gastric artery needed to be embolized. After several failed procedures, the replaced left hepatic artery was successfully catheterized and embolized with a microcatheter and microcoils via the right gastric artery through the anastomosis.</p> <p>Conclusion</p> <p>A replaced left hepatic artery arising from a left gastric artery can be catheterized via a right gastric artery by using the appropriate microcatheter and microguidewires, and multiple hepatic arteries can be converted into a single supply.</p

    Silver diagnosis in neuropathology: principles, practice and revised interpretation

    Get PDF
    Silver-staining methods are helpful for histological identification of pathological deposits. In spite of some ambiguities regarding their mechanism and interpretation, they are widely used for histopathological diagnosis. In this review, four major silver-staining methods, modified Bielschowsky, Bodian, Gallyas (GAL) and Campbell–Switzer (CS) methods, are outlined with respect to their principles, basic protocols and interpretations, thereby providing neuropathologists, technicians and neuroscientists with a common basis for comparing findings and identifying the issues that still need to be clarified. Some consider “argyrophilia” to be a homogeneous phenomenon irrespective of the lesion and the method. Thus, they seek to explain the differences among the methods by pointing to their different sensitivities in detecting lesions (quantitative difference). Comparative studies, however, have demonstrated that argyrophilia is heterogeneous and dependent not only on the method but also on the lesion (qualitative difference). Each staining method has its own lesion-dependent specificity and, within this specificity, its own sensitivity. This “method- and lesion-dependent” nature of argyrophilia enables operational sorting of disease-specific lesions based on their silver-staining profiles, which may potentially represent some disease-specific aspects. Furthermore, comparisons between immunohistochemical and biochemical data have revealed an empirical correlation between GAL+/CS-deposits and 4-repeat (4R) tau (corticobasal degeneration, progressive supranuclear palsy and argyrophilic grains) and its complementary reversal between GAL-/CS+deposits and 3-repeat (3R) tau (Pick bodies). Deposits containing both 3R and 4R tau (neurofibrillary tangles of Alzheimer type) are GAL+/CS+. Although no molecular explanations, other than these empiric correlations, are currently available, these distinctive features, especially when combined with immunohistochemistry, are useful because silver-staining methods and immunoreactions are complementary to each other

    Dietary patterns associated with fall-related fracture in elderly Japanese: a population based prospective study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Diet is considered an important factor for bone health, but is composed of a wide variety of foods containing complex combinations of nutrients. Therefore we investigated the relationship between dietary patterns and fall-related fractures in the elderly.</p> <p>Methods</p> <p>We designed a population-based prospective survey of 1178 elderly people in Japan in 2002. Dietary intake was assessed with a 75-item food frequency questionnaire (FFQ), from which dietary patterns were created by factor analysis from 27 food groups. The frequency of fall-related fracture was investigated based on insurance claim records from 2002 until 2006. The relationship between the incidence of fall-related fracture and modifiable factors, including dietary patterns, were examined. The Cox proportional hazards regression model was used to examine the relationships between dietary patterns and incidence of fall-related fracture with adjustment for age, gender, Body Mass Index (BMI) and energy intake.</p> <p>Results</p> <p>Among 877 participants who agreed to a 4 year follow-up, 28 suffered from a fall-related fracture. Three dietary patterns were identified: mainly vegetable, mainly meat and mainly traditional Japanese. The moderately confirmed (see statistical methods) groups with a Meat pattern showed a reduced risk of fall-related fracture (Hazard ratio = 0.36, 95% CI = 0.13 - 0.94) after adjustment for age, gender, BMI and energy intake. The Vegetable pattern showed a significant risk increase (Hazard ratio = 2.67, 95% CI = 1.03 - 6.90) after adjustment for age, gender and BMI. The Traditional Japanese pattern had no relationship to the risk of fall-related fracture.</p> <p>Conclusions</p> <p>The results of this study have the potential to reduce fall-related fracture risk in elderly Japanese. The results should be interpreted in light of the overall low meat intake of the Japanese population.</p

    Genetic Ablation of Pannexin1 Protects Retinal Neurons from Ischemic Injury

    Get PDF
    Pannexin1 (Panx1) forms large nonselective membrane channel that is implicated in paracrine and inflammatory signaling. In vitro experiments suggested that Panx1 could play a key role in ischemic death of hippocampal neurons. Since retinal ganglion cells (RGCs) express high levels of Panx1 and are susceptible to ischemic induced injury, we hypothesized that Panx1 contributes to rapid and selective loss of these neurons in ischemia. To test this hypothesis, we induced experimental retinal ischemia followed by reperfusion in live animals with the Panx1 channel genetically ablated either in the entire mouse (Panx1 KO), or only in neurons using the conditional knockout (Panx1 CKO) technology. Here we report that two distinct neurotoxic processes are induced in RGCs by ischemia in the wild type mice but are inactivated in Panx1KO and Panx1 CKO animals. First, the post-ischemic permeation of RGC plasma membranes is suppressed, as assessed by dye transfer and calcium imaging assays ex vivo and in vitro. Second, the inflammasome-mediated activation of caspase-1 and the production of interleukin-1β in the Panx1 KO retinas are inhibited. Our findings indicate that post-ischemic neurotoxicity in the retina is mediated by previously uncharacterized pathways, which involve neuronal Panx1 and are intrinsic to RGCs. Thus, our work presents the in vivo evidence for neurotoxicity elicited by neuronal Panx1, and identifies this channel as a new therapeutic target in ischemic pathologies

    Joint analysis of the energy spectrum of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory and the Telescope Array

    Get PDF
    The measurement of the energy spectrum of ultra-high-energy cosmic rays (UHECRs) is of crucial importance to clarify their origin and acceleration mechanisms. The Pierre Auger Observatory in Argentina and the Telescope Array (TA) in the US have reported their measurements of UHECR energy spectra observed in the southern and northern hemisphere, respectively. The region of the sky accessible to both Observatories ([−15,+24] degrees in declination) can be used to cross-calibrate the two spectra. The Auger-TA energy spectrum working group was organized in 2012 and has been working to understand the uncertainties in energy scale in both experiments, their systematic differences, and differences in the shape of the spectra. In previous works, we reported that there was an overall agreement of the energy spectra measured by the two observatories below 10 EeV while at higher energies, a remaining significant difference was observed in the common declination band. We revisit this issue to understand its origin by examining the systematic uncertainties, statistical effects, and other possibilities. We will also discuss the differences in the spectra in different declination bands and a new feature in the spectrum recently reported by the Auger Collaboration

    Why Are Outcomes Different for Registry Patients Enrolled Prospectively and Retrospectively? Insights from the Global Anticoagulant Registry in the FIELD-Atrial Fibrillation (GARFIELD-AF).

    Get PDF
    Background: Retrospective and prospective observational studies are designed to reflect real-world evidence on clinical practice, but can yield conflicting results. The GARFIELD-AF Registry includes both methods of enrolment and allows analysis of differences in patient characteristics and outcomes that may result. Methods and Results: Patients with atrial fibrillation (AF) and ≥1 risk factor for stroke at diagnosis of AF were recruited either retrospectively (n = 5069) or prospectively (n = 5501) from 19 countries and then followed prospectively. The retrospectively enrolled cohort comprised patients with established AF (for a least 6, and up to 24 months before enrolment), who were identified retrospectively (and baseline and partial follow-up data were collected from the emedical records) and then followed prospectively between 0-18 months (such that the total time of follow-up was 24 months; data collection Dec-2009 and Oct-2010). In the prospectively enrolled cohort, patients with newly diagnosed AF (≤6 weeks after diagnosis) were recruited between Mar-2010 and Oct-2011 and were followed for 24 months after enrolment. Differences between the cohorts were observed in clinical characteristics, including type of AF, stroke prevention strategies, and event rates. More patients in the retrospectively identified cohort received vitamin K antagonists (62.1% vs. 53.2%) and fewer received non-vitamin K oral anticoagulants (1.8% vs . 4.2%). All-cause mortality rates per 100 person-years during the prospective follow-up (starting the first study visit up to 1 year) were significantly lower in the retrospective than prospectively identified cohort (3.04 [95% CI 2.51 to 3.67] vs . 4.05 [95% CI 3.53 to 4.63]; p = 0.016). Conclusions: Interpretations of data from registries that aim to evaluate the characteristics and outcomes of patients with AF must take account of differences in registry design and the impact of recall bias and survivorship bias that is incurred with retrospective enrolment. Clinical Trial Registration: - URL: http://www.clinicaltrials.gov . Unique identifier for GARFIELD-AF (NCT01090362)

    Joint analysis of the energy spectrum of ultra-high-energy cosmic rays measured at the Pierre Auger Observatory and the Telescope Array

    Get PDF
    The measurement of the energy spectrum of ultra-high-energy cosmic rays (UHECRs) is of crucial importance to clarify their origin and acceleration mechanisms. The Pierre Auger Observatory in Argentina and the Telescope Array (TA) in the US have reported their measurements of UHECR energy spectra observed in the southern and northern hemisphere, respectively. The region of the sky accessible to both Observatories ([-15, +24] degrees in declination) can be used to cross-calibrate the two spectra. The Auger-TA energy spectrum working group was organized in 2012 and has been working to understand the uncertainties in energy scale in both experiments, their systematic differences, and differences in the shape of the spectra. In previous works, we reported that there was an overall agreement of the energy spectra measured by the two observatories below 10 EeV while at higher energies, a remaining significant difference was observed in the common declination band. We revisit this issue to understand its origin by examining the systematic uncertainties, statistical effects, and other possibilities. We will also discuss the differences in the spectra in different declination bands and a new feature in the spectrum recently reported by the Auger Collaboration

    UHECR arrival directions in the latest data from the original Auger and TA surface detectors and nearby galaxies

    Get PDF
    The distribution of ultra-high-energy cosmic-ray arrival directions appears to be nearly isotropic except for a dipole moment of order 6×(E/10 EeV)6 \times (E/10~\mathrm{EeV}) per cent. Nonetheless, at the highest energies, as the number of possible candidate sources within the propagation horizon and the magnetic deflections both shrink, smaller-scale anisotropies might be expected to emerge. On the other hand, the flux suppression reduces the statistics available for searching for such anisotropies. In this work, we consider two different lists of candidate sources: a sample of nearby starburst galaxies and the 2MRS catalog tracing stellar mass within 250 Mpc. We combine surface-detector data collected at the Pierre Auger Observatory until 2020 and the Telescope Array until 2019, and use them to test models in which UHECRs comprise an isotropic background and a foreground originating from the candidate sources and randomly deflected by magnetic fields. The free parameters of these models are the energy threshold, the signal fraction, and the search angular scale. We find a correlation between the arrival directions of 11.8%3.1%+5.0%11.8\%_{-3.1\%}^{+5.0\%} of cosmic rays detected with E38 EeVE \ge 38~\mathrm{EeV} by Auger or with E49 EeVE \gtrsim 49~\mathrm{EeV} by TA and the position of nearby starburst galaxies on a 15.53.2+5.3{15.5^\circ}_{-3.2^\circ}^{+5.3^\circ} angular scale, with a 4.2σ post-trial significance, as well as a weaker correlation with the overall galaxy distribution

    The UHECR dipole and quadrupole in the latest data from the original Auger and TA surface detectors

    Get PDF
    The sources of ultra-high-energy cosmic rays are still unknown, but assuming standard physics, they are expected to lie within a few hundred megaparsecs from us. Indeed, over cosmological distances cosmic rays lose energy to interactions with background photons, at a rate depending on their mass number and energy and properties of photonuclear interactions and photon backgrounds. The universe is not homogeneous at such scales, hence the distribution of the arrival directions of cosmic rays is expected to reflect the inhomogeneities in the distribution of galaxies; the shorter the energy loss lengths, the stronger the expected anisotropies. Galactic and intergalactic magnetic fields can blur and distort the picture, but the magnitudes of the largest-scale anisotropies, namely the dipole and quadrupole moments, are the most robust to their effects. Measuring them with no bias regardless of any higher-order multipoles is not possible except with full-sky coverage. In this work, we achieve this in three energy ranges (approximately 8--16 EeV, 16--32 EeV, and 32--∞ EeV) by combining surface-detector data collected at the Pierre Auger Observatory until 2020 and at the Telescope Array (TA) until 2019, before the completion of the upgrades of the arrays with new scintillator detectors. We find that the full-sky coverage achieved by combining Auger and TA data reduces the uncertainties on the north-south components of the dipole and quadrupole in half compared to Auger-only results
    corecore